

ClickHouse Keeper

Alexander Sapin, Software Engineer

Consensus Problem
In modern world applications are distributed
› Multiple independed servers (processes) involved
› Communication via unreliable network
Sometimes agreement on some data required
› Many cases: leader election, load balancing, value increment
› Failures may happen: network errors, processes failures
› No reliable clocks exists (in fact not true)
Required properties
› Termination – every alive processes agrees some value v;
› Integrity – if all the alive processes propose value v, then any correct process

must agree on v;
› Agreement – every alive process must agree on the same value.

1 / 47

Consensus in Real World: State Machine
Agreement on a single value is not enough
› Consensus algorithms works on state machines
› State machines has some state and operations (transitions)
› Often operations stored in log and applied to state machine
Example: distributed hash table
› State machine – in-memory hash table
› Operations: set(key, value), get(key)
› Log: set(’x’, 5), set(’y’, 10), ...
Consistency models: history of operations
› Linearizeability – equal to some sequential order for everyone
› Sequential consistency – equal to some sequential order for a single process
› ...

2 / 47

Consistency Models

3 / 47

Consensus in Real World: Example
State machine: bank account
Operations: deposit(x), withdraw(x)
Log:

Client1 Client2

S2 S3

S4

S5

S1
0

4 / 47

Consensus in Real World: Example
State machine: bank account
Operations: deposit(x), withdraw(x)
Log:

Client1 Client2

S2 S3

S4

S5

S1

Deposit 100 0

5 / 47

Consensus in Real World: Example
State machine: bank account
Operations: deposit(x), withdraw(x)
Log:

Client1 Client2

S2 S3

S4

S5

S1

Deposit 100 0

6 / 47

Consensus in Real World: Example
State machine: bank account
Operations: deposit(x), withdraw(x)
Log: d(100)

Client1 Client2

S2 S3

S4

S5

S1

Deposit 100 0

7 / 47

Consensus in Real World: Example
State machine: bank account
Operations: deposit(x), withdraw(x)
Log: d(100)

Client1 Client2

S2 S3

S4

S5

S1

OK 100

8 / 47

Consensus in Real World: Example
State machine: bank account
Operations: deposit(x), withdraw(x)
Log: d(100)

Client1 Client2

S2 S3

S4

S5

S1

Withdraw 50 100 Withdraw 75

9 / 47

Consensus in Real World: Example
State machine: bank account
Operations: deposit(x), withdraw(x)
Log: d(100)

Client1 Client2

S2 S3

S4

S5

S1

Withdraw 50 100 Withdraw 75

10 / 47

Consensus in Real World: Example
State machine: bank account
Operations: deposit(x), withdraw(x)
Log: d(100), w(75), w(50)

Client1 Client2

S2 S3

S4

S5

S1

Withdraw 50 100 Withdraw 75

11 / 47

Consensus in Real World: Example
State machine: bank account
Operations: deposit(x), withdraw(x)
Log: d(100), w(75), w(50)

Client1 Client2

S2 S3

S4

S5

S1

Withdraw 50 25 OK

12 / 47

Consensus in Real World: Example
State machine: bank account
Operations: deposit(x), withdraw(x)
Log: d(100), w(75), w(50)

Client1 Client2

S2 S3

S4

S5

S1

NOT OK 25 OK

13 / 47

Consensus in Real World: Algos and Apps
Some consensus algorithms

› Paxos, MultiPaxos (around 2000)

› ZAB (2011)

› Raft (2014)

Solves consensus problem:

› Coordination: Chubby, ZooKeeper, etcd, Consul
› KV Storage: DynamoDB, Cassandra, Riak

› Distributed Databases: Spanner, CockroachDB

› Stream Processing: Kafka, Millwheel

› Resource Management: Kubernetes, Mesos

14 / 47

Why ClickHouse needs Consensus?
Replicated Merge Tree
› Leader-leader eventually-consistent replication
› Distributed state machine with own log
› Consensus: block numbers allocation, merges assignment
Distributed DDL queries (ON CLUSTER)
› Distributed state machine with own log
› Sequential queries execution for each shard
› Consensus: order of queries, executor choice
Main properties
› Small amount of data
› Linearizeability for writes
› Highly available

15 / 47

Consensus for ClickHouse
ClickHouse use ZooKeeper for

› Replicated merge tree metadata

› DDL queries log storage

› Distributed notification system

Why ZooKeeper?

› Historical reasons

› Simple and powerful API

› MultiTransactions

› Watches

› Good performance for reads

16 / 47

ZooKeeper Coordination System
State Machine (Data Model)
› Filesystem-like distributed hash-table
› Each node can have both data and children
› Nodes have stats (version of data, of children, ...)
› No data types, everything is string
Client API
› Own TCP full-duplex protocol
› Persistent session for each client (unique session_id)
Main operations
› Read: get(node), list(node), exists(node), check(node, version)
› Write: set(node, value), create(node), remove(node)
› Writes can be combined into MultiTransactions

17 / 47

ZooKeeper Features
State Machine features

› Ephemeral nodes – disappear with session disconnect

› Sequential nodes – unique names with ten digits number

› Node can be both sequential and ephemeral

Client API features

› Watches – server-side one-time triggers

› Session restore – client can reconnect with the same session_id

Pluggable ACL + authentication system

› The most strange implementation I’ve ever seen

18 / 47

ZooKeeper Internals
Consistency Guarantees
› Linearizeability for write operations
› Sequential consistency for reads (reads are local)
› Atomicity of MultiTransactions
› No rollbacks of commited writes
Consensus Implementation
› Own algorithm: ZooKeeper Atomic Broadcast
› Operations are idempotent and stored in log files on filesystem
› Regular state machine snapshots
Scalability
› Linear for reads (more servers, faster reads)
› Inverse linear for writes (more servers, slower writes)

19 / 47

ZooKeeper Pros and Cons for ClickHouse
Pros:

› Battle tested consensus

› Appropriate data model

› Simple protocol

› Has own client implementation

Cons:

› Writen in Java

› Difficult to operate

› Require separate servers

› ZXID overflow

› Uncompressed logs and
snapshots

› Checksums are optional

› Unreliable reconnect semantics

› Almost does not develop

20 / 47

ClickHouse Keeper
Replacement for ZooKeeper
› Compatible client protocol (all clients work out of the box)
› The same state machine (data model)
› Better guarantees (optionally allows linearizeable reads)
› Comparable performance (better for reads, similar for writes)
Implementation
› Written in C++, bundled into clickhouse-server package
› Uses Raft algorithm (NuRaft implementation)
› Can be embedded into ClickHouse server
› Optional TLS for clients and internal communication
Advantages over ZooKeeper
› Checksums in logs, snapshots and internal protocol
› Compressed snapshots and logs

21 / 47

ClickHouse Keeper: In Action

S1

S2

S3

Client

ClickHouse Keeper Cluster

Raft

22 / 47

ClickHouse Keeper: In Action

L

F

F

Client

ClickHouse Keeper Cluster

Raft

HB

HB

23 / 47

ClickHouse Keeper: In Action

L

F

F

Client

ClickHouse Keeper Cluster

Raft

Raft Leader

Raft follower

24 / 47

ClickHouse Keeper: In Action

L

F

F

Client

ClickHouse Keeper Cluster

Raft

Raft Leader

Raft follower

Any
ZooKeeper

Client

25 / 47

ClickHouse Keeper: In Action

L

F

F

Client

ClickHouse Keeper Cluster

Raft

All requests goes
to leader

26 / 47

ClickHouse Keeper: In Action

L

F

F

Client

ClickHouse Keeper Cluster

Raft

Requests
forwarding

27 / 47

ClickHouse Keeper: In Action

L

F

F

Client

ClickHouse Keeper Cluster

Raft

create("/n1", "hello")

28 / 47

ClickHouse Keeper: In Action

L

F

F

Client

ClickHouse Keeper Cluster

Raftcreate("/n1", "hello")

29 / 47

ClickHouse Keeper: In Action

L

F

F

Client

ClickHouse Keeper Cluster

Raft

append log
request

append log
request

append log

30 / 47

ClickHouse Keeper: In Action

L

F

F

Client

ClickHouse Keeper Cluster

Raftappend log
response: Ok

31 / 47

ClickHouse Keeper: In Action

L

F

F

Client

ClickHouse Keeper Cluster

Raft

Committed

Committed

Commit

32 / 47

ClickHouse Keeper: In Action

L

F

F

Client

ClickHouse Keeper Cluster

Raft

Commit

Commit

33 / 47

ClickHouse Keeper: In Action

L

F

F

Client

ClickHouse Keeper Cluster

Raft

Ok

34 / 47

ClickHouse Keeper: In Action

L

F

F

Client

ClickHouse Keeper Cluster

Raft

get("/n1")

35 / 47

ClickHouse Keeper: In Action

L

F

F

Client

ClickHouse Keeper Cluster

Raft

Ok: "hello"

36 / 47

ClickHouse Keeper: Testing
Ordinary ClickHouse tests

› Functional tests use clickhouse-keeper in single node mode

› Integration tests use clickhouse-keeper in three nodes mode

› Separate integration tests for basic functionality

Jepsen tests (http://jepsen.io/)
› General framework for distributed systems testing

› Written in Clojure with consistency checks

› Failures: crashes, network partitions, disk corruption, network slow downs

› More tests than for ZooKeeper

› About 5 serious bugs found both in NuRaft and our code

37 / 47

http://jepsen.io/

ClickHouse Keeper: How to use?
Twomodes
› As standalone application (clickhouse-keeper)
› Inside clickhouse-server
Configuration
› Very similar to clickhouse-server .xml (or .yml) file
› Must be equal for all quorum participants
General recommendations
› Place directory with logs to the independet SSD if possible
› Don’t try to have more than 9 quorum participants
› Don’t change configuration for more than 1 server at once
Run standalone

clickhouse-keeper --daemon
--config /etc/your_path_to_config/config.xml

38 / 47

ClickHouse Keeper: Simpliest Configuration
<keeper_server>

<tcp_port>9181</tcp_port>
<server_id>1</server_id>
<storage_path>/var/lib/clickhouse/coordination/</storage_path>
<coordination_settings>

<force_sync>false</force_sync>
</coordination_settings>
<raft_configuration>

<server>
<id>1</id>
<hostname>localhost</hostname>
<port>44444</port>

</server>
</raft_configuration>

</keeper_server>
39 / 47

ClickHouse Keeper: Configuration№1

K1 K2

K3

Standalone Keeper Cluster

R1

R2

R3

R1

R2

R3

R1

R2

R3

Shard 1 Shard 2 Shard N

ClickHouse Cluster 40 / 47

ClickHouse Keeper: Configuration№2

R1

R2

R3

R1

R2

R3

R1

R2

R3

Shard 1 Shard 2 Shard N

ClickHouse Cluster

K1

K2

K3

K1

K2

K3

K1

K2

K3

Independed Keeper for each shard

41 / 47

ClickHouse Keeper: Configuration№3

R1

R2

R3

R1

R2

R3

R1

R2

R3

Shard 1 Shard 2 Shard N

ClickHouse Cluster

K1

K2

K3

One powerful shard with Keeper

42 / 47

ClickHouse Keeper: Configuration№4

R1

R2

R3

R1

R2

R3

R1

R2

R3

Shard 1 Shard 2 Shard N

ClickHouse Cluster

K1

K2

K3

K1

K2

K3

K1

K2

K3

Combination of №2+№3

43 / 47

ClickHouse Keeper: Some Settings
If using slow disk or have big network latency try to increase

› heart_beat_interval_ms – how often leader will send heartbeats

› election_timeout_lower_bound_ms – how long followers will wait for HB

› election_timeout_upper_bound_ms – how long followers will wait for HB

Quorum priorities in raft_configuration of server

› can_become_leader – server will be observer

› priority – server will become leader more often according to priority

If you need reads linearizeability [experimental]

› quorum_reads – read requests go through Raft

44 / 47

ClickHouse Keeper: Migration from ZooKeeper
Separate tool clickhouse-keeper-converter
› Allows to convert ZooKeeper data to clickhouse-keeper snapshot
› Checked for ZooKeeper 3.4+
› Bundled into clickhouse-server package
How to migrate
› Stop all ZooKeeper nodes
› Found leader for migration
› Start ZooKeeper on leader node and stop again (force snapshot)
› Run clickhouse-keeper-converter:

clickhouse-keeper-converter
--zookeeper-logs-dir /path_to_zookeeper/version-2
--zookeeper-snapshots-dir /path_to_zookeeper/version-2
--output-dir /path/to/clickhouse/keeper/snapshots

› Copy resulted snapshot to all clickhouse-keeper nodes
45 / 47

ClickHouse Keeper: Current Status
Preproduction (available since 21.8)
› Testing in Yandex.Cloud installations
› Testing by some experienced users
What to read
› Documentation:

https://clickhouse.tech/docs/en/operations/clickhouse-keeper/
› Integration tests:

https://github.com/ClickHouse/ClickHouse/tree/master/tests/integration
› NuRaft docs:

https://github.com/eBay/NuRaft

Next steps
› Four-letter words introspection interface
› Compressed logs
› Elastic quorum configuration 46 / 47

https://clickhouse.tech/docs/en/operations/clickhouse-keeper/
https://github.com/ClickHouse/ClickHouse/tree/master/tests/integration
https://github.com/eBay/NuRaft

Thank you

QA

47 / 47

